Université Sultan Moulay Slimane Ecole Supérieure de Technologie- Fkih Ben Salah Filière Industrie Agro-Alimentaire

Eléments de réponse de TD N° I : Enzymologie (Biochimie métabolique)

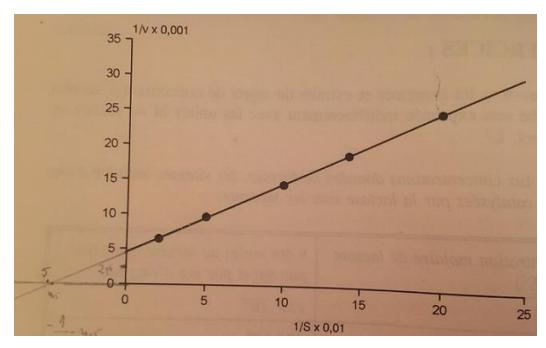
Réponse Exercice I

1. on sait que E_T = E_L + ES (1) et que E_T = EL= ES On cherche ES : ES= ET - EL= ET- ES. ES- ES-

2. Application numérique :

 \blacksquare S1=10⁻²M, ET=10⁻⁸M et Km=10⁻⁴M

$$\rightarrow$$
 ES1= 10^{-8} M

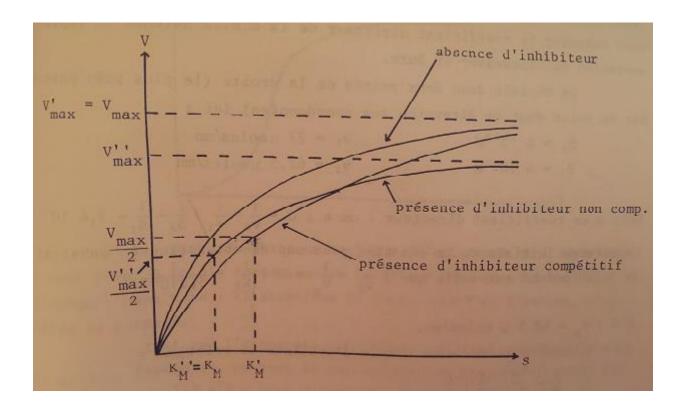

■ S2= 10^{-4} M, ET= 10^{-8} M et Km= 10^{-4} M ➤ ES1= 0.5 10^{-8} M

Réponse Exercice II

1. on va porter 1/V= f(1/S). Il s'agit de la représentation de Lineweaver et Burk qui est linéaire et donc permet la détermination graphique de Km et Vmax sans trop d'erreurs.

1/S x10 ⁻²	2	5	10	14,2	20
$1/V \times 10^{-3}$	6,5	9,7	14,5	18,8	24,6

D'où le graphe suivant :

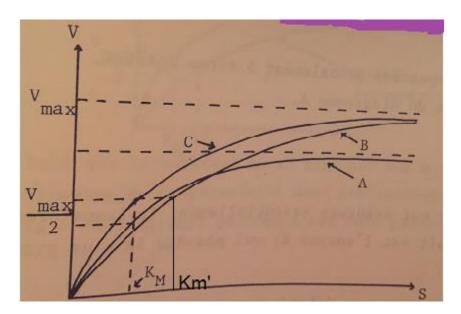


- ❖ L'intersection avec l'axe des abscisses donne -1/Km= 4,5 10² équivaut à km=0,22 10⁻² M.
- ❖ L'intersection avec l'axe des ordonnées donne 1/Vmax= 4,5 10³ équivaut à Vmax=0,22 10⁻³ M/min/mg.
- 2. Activité moléculaire spécifique Vs= 222.10⁻⁶ x10³x135000=29700M/mg/mn

Réponse Exercice III

1-

- La température peut influencer la vitesse initiale d'une réaction enzymatique en dénaturant l'enzyme.
- La présence d'un effecteur peut influencer la vitesse initiale dans le cas d'une enzyme allostérique
- La présence d'un inhibiteur peut influencer la vitesse
- La concentration du substrat lui-même peut influencer cette vitesse initiale
- 2- en présence d'un inhibiteur compétitif Km augmente et Vmax reste inchangée, alors qu'en présence d'un inhibiteur non compétitif Vmax diminue et Km (Km=Ki) reste constante et ceci par rapport à l'absence d'un inhibiteur


Réponse Exercice IV

a) Si l'on prolonge les trois droites de Linweaver et Burk on constate que : $Km_B > Km_C = Km_A$ et $Vmax_A < Vmax_C = Vmax_B$

29 MARS 2020 (Pr. BOUDA S.)

- La présence d'un inhibiteur compétitif provoque une augmentation de Km alors que Vmax reste constante ; la courbe B est donc la courbe en présence d'inhibiteur compétitif alors que la courbe C est la courbe en l'absence d'inhibiteur.
- La présence d'un inhibiteur non compétitif ne change pas l'affinité de l'enzyme pour le substrat (Km= Cte) mais diminue Vmax : c'est donc la courbe A qui est obtenue en présence d'inhibiteur non compétitif.

b) Graphe V=f(S)

c) Une enzyme allostérique a une cinétique $V=f\left(S\right)$ représentée par une courbe sigmoïde, ce qui n'est pas le cas ici, par conséquent l'enzyme étudié n'est donc pas allostérique